Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (2-x^2)^{1/2}
derivative\:(2-x^{2})^{\frac{1}{2}}
integral from 0 to 1 of 1/(sqrt(x+1))
\int\:_{0}^{1}\frac{1}{\sqrt{x+1}}dx
integral from 0 to 1 of (x+sqrt(x))
\int\:_{0}^{1}(x+\sqrt{x})dx
integral of ((6-x))/(sqrt(4x^2-12x+7))
\int\:\frac{(6-x)}{\sqrt{4x^{2}-12x+7}}dx
integral of (ln(2x))/(2x^2)
\int\:\frac{\ln(2x)}{2x^{2}}dx
integral of t(arctan(t))
\int\:t(\arctan(t))dt
d/(dp)(3p(1-0.5p))
\frac{d}{dp}(3p(1-0.5p))
derivative of (-6/((x+1)^4))
\frac{d}{dx}(\frac{-6}{(x+1)^{4}})
(\partial)/(\partial x)(1+c/x-b/(x^3))
\frac{\partial\:}{\partial\:x}(1+\frac{c}{x}-\frac{b}{x^{3}})
sum from k=1 to infinity of ln(1+1/k)
\sum\:_{k=1}^{\infty\:}\ln(1+\frac{1}{k})
x^2y^'-xy=x^{-7}y^{1/2}
x^{2}y^{\prime\:}-xy=x^{-7}y^{\frac{1}{2}}
limit as x approaches 2 of arctan(((2x^2-8))/(3x^2-6x))
\lim\:_{x\to\:2}(\arctan(\frac{(2x^{2}-8)}{3x^{2}-6x}))
area y=-x^2-2x,y=-2x-4,x=-3,x=0
area\:y=-x^{2}-2x,y=-2x-4,x=-3,x=0
y^{'''}+y^'=tan(x)
y^{\prime\:\prime\:\prime\:}+y^{\prime\:}=\tan(x)
derivative of 6sec(x-5x)
\frac{d}{dx}(6\sec(x)-5x)
limit as x approaches-1 of (x+3x^3)^4
\lim\:_{x\to\:-1}((x+3x^{3})^{4})
y^'=e^{x+y}
y^{\prime\:}=e^{x+y}
y^{''}+2y^'-3y=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}+2y^{\prime\:}-3y=0,y(0)=1,y^{\prime\:}(0)=1
derivative of y=xe^{3x}
derivative\:y=xe^{3x}
integral of sqrt(1+t^3)
\int\:\sqrt{1+t^{3}}dt
sum from n=0 to infinity of (-1)^n(-2)^n
\sum\:_{n=0}^{\infty\:}(-1)^{n}(-2)^{n}
inverse oflaplace (2s+1)/((s+1)^2)
inverselaplace\:\frac{2s+1}{(s+1)^{2}}
limit as x approaches-2 of 2x^2-8x-3
\lim\:_{x\to\:-2}(2x^{2}-8x-3)
integral of (9x^2-8x+16)/(x^3+4x)
\int\:\frac{9x^{2}-8x+16}{x^{3}+4x}dx
integral of e^{cos(11t)}sin(11t)
\int\:e^{\cos(11t)}\sin(11t)dt
derivative of 1/9
\frac{d}{dx}(\frac{1}{9})
integral of (a+bx^4)/(sqrt(5ax+bx^5))
\int\:\frac{a+bx^{4}}{\sqrt{5ax+bx^{5}}}dx
derivative of ln(21x)
\frac{d}{dx}(\ln(21x))
derivative of g(x)=(x^2+3)(x^2-4x)
derivative\:g(x)=(x^{2}+3)(x^{2}-4x)
laplacetransform-t/4-3/8 sin(2t)
laplacetransform\:-\frac{t}{4}-\frac{3}{8}\sin(2t)
integral from 0 to 1 of pi(x-x^4)
\int\:_{0}^{1}π(x-x^{4})dx
integral of-3x^{-1}
\int\:-3x^{-1}dx
derivative of f(x)=(x^3-2)
derivative\:f(x)=(x^{3}-2)
expand (2x-7)^5
expand\:(2x-7)^{5}
integral of sin(5x)cos(6x)
\int\:\sin(5x)\cos(6x)dx
integral from 3 to 4 of y^3+1/(4y^3)
\int\:_{3}^{4}y^{3}+\frac{1}{4y^{3}}dy
integral of (9x^8+6)/(x^9+6x)
\int\:\frac{9x^{8}+6}{x^{9}+6x}dx
f(x)=sin(7ln(x))
f(x)=\sin(7\ln(x))
derivative of cos(3cos(2sqrt(x)))
\frac{d}{dx}(\cos(3\cos(2\sqrt{x})))
laplacetransform e^{-2s}
laplacetransform\:e^{-2s}
f^'(x)=-1/x (f(x))
f^{\prime\:}(x)=-\frac{1}{x}(f(x))
inverse oflaplace (s+1)/(s^2+2s+2)
inverselaplace\:\frac{s+1}{s^{2}+2s+2}
integral of 1/x-1
\int\:\frac{1}{x}-1dx
integral of (1-cos^2(x))sin(x)
\int\:(1-\cos^{2}(x))\sin(x)dx
integral of 11sec^{-2}(xta)n^3x
\int\:11\sec^{-2}(xta)n^{3}xdx
(\partial)/(\partial x)(ye^x+xe^{-y})
\frac{\partial\:}{\partial\:x}(ye^{x}+xe^{-y})
taylor 1/((7+x)^2)
taylor\:\frac{1}{(7+x)^{2}}
tangent of y=(4x)/(x^2+1),(1,2)
tangent\:y=\frac{4x}{x^{2}+1},(1,2)
derivative of \sqrt[5]{x^2}-x^pi
derivative\:\sqrt[5]{x^{2}}-x^{π}
integral of 2+t
\int\:2+tdt
derivative of f(x)=\sqrt[4]{t}
derivative\:f(x)=\sqrt[4]{t}
limit as x approaches infinity of x^{-2}e^{2x}
\lim\:_{x\to\:\infty\:}(x^{-2}e^{2x})
derivative of e^{(2x^3-2})
\frac{d}{dx}(e^{(2x)^{3}-2})
y^'=((4t^3+1))/(2y-6)
y^{\prime\:}=\frac{(4t^{3}+1)}{2y-6}
integral of tan^3(x)sec^2(x)
\int\:\tan^{3}(x)\sec^{2}(x)dx
area y=15-x^2,y=x^2-3
area\:y=15-x^{2},y=x^{2}-3
integral from 1 to 5 of 1/(1+2x)
\int\:_{1}^{5}\frac{1}{1+2x}dx
(\partial)/(\partial x)((x^2y)/(x^4+y^2))
\frac{\partial\:}{\partial\:x}(\frac{x^{2}y}{x^{4}+y^{2}})
area |x-2|,0=x-3y+6
area\:\left|x-2\right|,0=x-3y+6
integral from 2 to 3 of (40)/(sqrt(3-x))
\int\:_{2}^{3}\frac{40}{\sqrt{3-x}}dx
derivative of (cos(x)/(1+asin(x)))
\frac{d}{dx}(\frac{\cos(x)}{1+a\sin(x)})
integral of 6/(1+x^2)
\int\:\frac{6}{1+x^{2}}dx
limit as x approaches 1 of f(x)+g(x)
\lim\:_{x\to\:1}(f(x)+g(x))
sum from n=2 to infinity of n/(2n^2-3)
\sum\:_{n=2}^{\infty\:}\frac{n}{2n^{2}-3}
(\partial)/(\partial x)(e^{-xy}+y^3x^4)
\frac{\partial\:}{\partial\:x}(e^{-xy}+y^{3}x^{4})
derivative of 3x^3+2x^2-1x+5
\frac{d}{dx}(3x^{3}+2x^{2}-1x+5)
integral from 0 to 3 of e^{-x^2}
\int\:_{0}^{3}e^{-x^{2}}dx
limit as x approaches pi of ln(cos(x)-3)
\lim\:_{x\to\:π}(\ln(\cos(x)-3))
integral of y^2z+2xz^2
\int\:y^{2}z+2xz^{2}dx
derivative of 2/x
derivative\:\frac{2}{x}
integral of (-4sin(2t))
\int\:(-4\sin(2t))dt
limit as x approaches 0-of (x^2)/7-6/x
\lim\:_{x\to\:0-}(\frac{x^{2}}{7}-\frac{6}{x})
integral from-3 to 3 of (3-|x|)
\int\:_{-3}^{3}(3-\left|x\right|)dx
(dy}{dx}-\frac{2y)/x =x^2
\frac{dy}{dx}-\frac{2y}{x}=x^{2}
slope ofintercept (2.3)(5.2)
slopeintercept\:(2.3)(5.2)
f^'(x)=x|x|
f^{\prime\:}(x)=x\left|x\right|
integral of 2\sqrt[5]{x^4}-7x^3+10e^x-1
\int\:2\sqrt[5]{x^{4}}-7x^{3}+10e^{x}-1dx
derivative of x^{x^3-2x}
derivative\:x^{x^{3}-2x}
integral of x^2(3-2x^3)^{1/3}
\int\:x^{2}(3-2x^{3})^{\frac{1}{3}}dx
(\partial)/(\partial x)((x+y^2)e^{x-y})
\frac{\partial\:}{\partial\:x}((x+y^{2})e^{x-y})
integral from-6 to 1 of-2x^2-10x+12
\int\:_{-6}^{1}-2x^{2}-10x+12dx
integral of ((x-1)^2-(x+1)^2)(x^3+1)
\int\:((x-1)^{2}-(x+1)^{2})(x^{3}+1)dx
(\partial)/(\partial x)(zln(y)+e^2)
\frac{\partial\:}{\partial\:x}(z\ln(y)+e^{2})
derivative of \sqrt[3]{9x^2+4}
\frac{d}{dx}(\sqrt[3]{9x^{2}+4})
derivative of x^2arcsinh(9x)
\frac{d}{dx}(x^{2}\arcsinh(9x))
integral of 1/(x^5)-3/(x^2)
\int\:\frac{1}{x^{5}}-\frac{3}{x^{2}}dx
xy^'+2y=x^2-x+1
xy^{\prime\:}+2y=x^{2}-x+1
tangent of f(x)=ln(x^2-9x+1),(9,0)
tangent\:f(x)=\ln(x^{2}-9x+1),(9,0)
slope of (-2,2),(1,-2)
slope\:(-2,2),(1,-2)
laplacetransform 6t^2
laplacetransform\:6t^{2}
integral of 1/(sqrt(484-x^2))
\int\:\frac{1}{\sqrt{484-x^{2}}}dx
derivative of In^2x
\frac{d}{dx}(In^{2}x)
sum from n=1 to infinity}(e^{2n of)/n
\sum\:_{n=1}^{\infty\:}\frac{e^{2n}}{n}
integral from 1 to e of (ln(x))/(x^2)
\int\:_{1}^{e}\frac{\ln(x)}{x^{2}}dx
derivative of f(x)=x^8
derivative\:f(x)=x^{8}
derivative of e^{-x}+x^3-6
\frac{d}{dx}(e^{-x}+x^{3}-6)
integral of 2*x
\int\:2\cdot\:xdx
limit as x approaches 0 of (sin(4x))/4
\lim\:_{x\to\:0}(\frac{\sin(4x)}{4})
tangent of y= 2/(x-2)
tangent\:y=\frac{2}{x-2}
integral of (1-2x)/(e^{-2x)}
\int\:\frac{1-2x}{e^{-2x}}dx
1
..
146
147
148
149
150
..
2459