Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of-x+3
\frac{d}{dx}(-x+3)
derivative of (-4x-4sqrt(1+x)/(x^2-1))
\frac{d}{dx}(\frac{-4x-4\sqrt{1+x}}{x^{2}-1})
2(dy}{dx}-\frac{(45x^4))/y =0
2\frac{dy}{dx}-\frac{(45x^{4})}{y}=0
derivative of f(x)=sqrt(x+4)
derivative\:f(x)=\sqrt{x+4}
derivative of (x^2-2x+2)/(x-1)
derivative\:\frac{x^{2}-2x+2}{x-1}
integral of (4x^6+3x^5-8)/(x^5)
\int\:\frac{4x^{6}+3x^{5}-8}{x^{5}}dx
(dy)/(dx)=((e^x-1))/(e^y)
\frac{dy}{dx}=\frac{(e^{x}-1)}{e^{y}}
(\partial)/(\partial y)(1+ln(x)+y/x)
\frac{\partial\:}{\partial\:y}(1+\ln(x)+\frac{y}{x})
integral of e^{4x^2}
\int\:e^{4x^{2}}dx
(dx)/(dy)= x/y
\frac{dx}{dy}=\frac{x}{y}
(\partial)/(\partial y)((18xy)/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{18xy}{x+y})
derivative of arccsc(x^4+1)
derivative\:\arccsc(x^{4}+1)
limit as n approaches infinity of 2^{1/n}
\lim\:_{n\to\:\infty\:}(2^{\frac{1}{n}})
y^'+e^xy=e^{3x}y^{-2}
y^{\prime\:}+e^{x}y=e^{3x}y^{-2}
area 6-x^2,x^2-2
area\:6-x^{2},x^{2}-2
integral of x/(x+1)
\int\:\frac{x}{x+1}dx
integral from-2 to 2 of ln(x+3)
\int\:_{-2}^{2}\ln(x+3)dx
integral of 2xe^{17x}
\int\:2xe^{17x}dx
(\partial)/(\partial s)(sqrt(r^2+s^2))
\frac{\partial\:}{\partial\:s}(\sqrt{r^{2}+s^{2}})
sum from n=5 to infinity of tan(1/n)
\sum\:_{n=5}^{\infty\:}\tan(\frac{1}{n})
derivative of 2x-2sin(x)
\frac{d}{dx}(2x-2\sin(x))
tangent of f(x)=x^4+8x^2-x,(1,8)
tangent\:f(x)=x^{4}+8x^{2}-x,(1,8)
derivative of ye^{xy}
\frac{d}{dx}(ye^{xy})
integral from 0 to 2 of 1/(sqrt(2-x))
\int\:_{0}^{2}\frac{1}{\sqrt{2-x}}dx
integral of (sin(x))^{-1}
\int\:(\sin(x))^{-1}dx
area-x,x-x^2,0,2
area\:-x,x-x^{2},0,2
integral of (x^3)/1+x^4
\int\:\frac{x^{3}}{1}+x^{4}dx
integral of cos(n*x)
\int\:\cos(n\cdot\:x)dx
sum from n=1 to infinity of 1/((2n+1)^3)
\sum\:_{n=1}^{\infty\:}\frac{1}{(2n+1)^{3}}
derivative of log_{4}(\sqrt[3]{x})
\frac{d}{dx}(\log_{4}(\sqrt[3]{x}))
integral of 1/(x^4+4x^2+4)
\int\:\frac{1}{x^{4}+4x^{2}+4}dx
derivative of ln(w(h-l)+pi-T)+ln(l)
derivative\:\ln(w(h-l)+π-T)+\ln(l)
(\partial)/(\partial x)(x^2+3xy)
\frac{\partial\:}{\partial\:x}(x^{2}+3xy)
derivative of y= x/6-6/x
derivative\:y=\frac{x}{6}-\frac{6}{x}
(\partial)/(\partial x)(-0.1*cos(6*x))
\frac{\partial\:}{\partial\:x}(-0.1\cdot\:\cos(6\cdot\:x))
limit as x approaches 0 of (-11x^2+9x)/x
\lim\:_{x\to\:0}(\frac{-11x^{2}+9x}{x})
integral of xsin(3+3x)
\int\:x\sin(3+3x)dx
integral of (1/5 x^5+1/3 x^4-x)
\int\:(\frac{1}{5}x^{5}+\frac{1}{3}x^{4}-x)dx
limit as x approaches 0 of (1-2x)^{(1/x)}
\lim\:_{x\to\:0}((1-2x)^{(\frac{1}{x})})
derivative of ln(10x^2-8)
\frac{d}{dx}(\ln(10x^{2}-8))
y^'=e^{2t+y-1}-2
y^{\prime\:}=e^{2t+y-1}-2
(\partial)/(\partial x)(e^{xy}+ln(x/y))
\frac{\partial\:}{\partial\:x}(e^{xy}+\ln(\frac{x}{y}))
(\partial)/(\partial x)(2xy^2+4)
\frac{\partial\:}{\partial\:x}(2xy^{2}+4)
limit as w approaches infinity of (2w^2-3w+4)/(5w^2+7w-1)
\lim\:_{w\to\:\infty\:}(\frac{2w^{2}-3w+4}{5w^{2}+7w-1})
y^{''}-ky=0
y^{\prime\:\prime\:}-ky=0
limit as x approaches-2 of (x-6)^{2/3}
\lim\:_{x\to\:-2}((x-6)^{\frac{2}{3}})
y^'=0.2ln((2000)/y)y
y^{\prime\:}=0.2\ln(\frac{2000}{y})y
derivative of 6/(1+cos(x))
\frac{d}{dx}(\frac{6}{1+\cos(x)})
limit as x approaches infinity of 0
\lim\:_{x\to\:\infty\:}(0)
y^{''}+8y^'+16y=5e^{-4t}
y^{\prime\:\prime\:}+8y^{\prime\:}+16y=5e^{-4t}
integral of e^{-19x}
\int\:e^{-19x}dx
area-3x-x^2,-10
area\:-3x-x^{2},-10
y^'=9x+y,y(0)=3
y^{\prime\:}=9x+y,y(0)=3
derivative of y=x^2sqrt(9-x^2)
derivative\:y=x^{2}\sqrt{9-x^{2}}
limit as x approaches 0 of (7x)/(sin(x))
\lim\:_{x\to\:0}(\frac{7x}{\sin(x)})
derivative of f(x)=sqrt(5x+6)
derivative\:f(x)=\sqrt{5x+6}
integral of sqrt(cos(2x))
\int\:\sqrt{\cos(2x)}dx
(dP)/(dt)=-1/2 P+t
\frac{dP}{dt}=-\frac{1}{2}P+t
(dy)/(dx)=x^2sec(y)
\frac{dy}{dx}=x^{2}\sec(y)
derivative of 3x*e^{2x}
\frac{d}{dx}(3x\cdot\:e^{2x})
limit as x approaches infinity of (e^{1/x})/(arctan(x))
\lim\:_{x\to\:\infty\:}(\frac{e^{\frac{1}{x}}}{\arctan(x)})
integral of 7xsin(x)
\int\:7x\sin(x)dx
inverse oflaplace (10)/(s^2)
inverselaplace\:\frac{10}{s^{2}}
(\partial)/(\partial x)(10^{x^2-1})
\frac{\partial\:}{\partial\:x}(10^{x^{2}-1})
integral of 1/(2xln(x))
\int\:\frac{1}{2x\ln(x)}dx
derivative of y=\sqrt[5]{x^3}-x^pi
derivative\:y=\sqrt[5]{x^{3}}-x^{π}
derivative of (7x/(x^2+49))
\frac{d}{dx}(\frac{7x}{x^{2}+49})
(d^4)/(dx^4)(4e^{x^2})
\frac{d^{4}}{dx^{4}}(4e^{x^{2}})
integral of 3/(x^2(x-1))
\int\:\frac{3}{x^{2}(x-1)}dx
(\partial)/(\partial x)(y^2ln(x))
\frac{\partial\:}{\partial\:x}(y^{2}\ln(x))
integral of (x^6-5x)/(x^4)
\int\:\frac{x^{6}-5x}{x^{4}}dx
derivative of e^2(sin(pi/4-1))
\frac{d}{dx}(e^{2}(\sin(\frac{π}{4})-1))
inverse oflaplace (s-1)/(2s^2+8s+11)
inverselaplace\:\frac{s-1}{2s^{2}+8s+11}
derivative of sqrt(1+5x)
derivative\:\sqrt{1+5x}
integral of (x+4)/(x^3+3x^2+2x)
\int\:\frac{x+4}{x^{3}+3x^{2}+2x}dx
derivative of (a^{2/3}-x^{2/3}^{3/2})
\frac{d}{dx}((a^{\frac{2}{3}}-x^{\frac{2}{3}})^{\frac{3}{2}})
derivative of (arcsin(x)/(arctan(x)))
\frac{d}{dx}(\frac{\arcsin(x)}{\arctan(x)})
derivative of f(x)=x^3-4x
derivative\:f(x)=x^{3}-4x
integral of (tan(x)sec^2(y))
\int\:(\tan(x)\sec^{2}(y))dx
derivative of (a+bx^3)
\frac{d}{dx}((a+bx)^{3})
limit as x approaches 2 of x^2-4x+1
\lim\:_{x\to\:2}(x^{2}-4x+1)
integral of 1/((1+x^4))
\int\:\frac{1}{(1+x^{4})}dx
integral of (x^4)/((7+x^5)^2)
\int\:\frac{x^{4}}{(7+x^{5})^{2}}dx
sum from n=2 to infinity of (3^n)/(12^n)
\sum\:_{n=2}^{\infty\:}\frac{3^{n}}{12^{n}}
4y^{''}-4y^'+y=8e^{x/2}
4y^{\prime\:\prime\:}-4y^{\prime\:}+y=8e^{\frac{x}{2}}
derivative of y=8e^{17t}
derivative\:y=8e^{17t}
derivative of 4csc(5x)
derivative\:4\csc(5x)
f(t)=4t^2
f(t)=4t^{2}
(\partial)/(\partial x)(Ae^{i(kx-wt)})
\frac{\partial\:}{\partial\:x}(Ae^{i(kx-wt)})
(\partial)/(\partial x)(ln(sin^2(x)))
\frac{\partial\:}{\partial\:x}(\ln(\sin^{2}(x)))
sum from n=0 to infinity of 2^n*(1/4)^{ln(2^n)}
\sum\:_{n=0}^{\infty\:}2^{n}\cdot\:(\frac{1}{4})^{\ln(2^{n})}
(d^2y)/(dx^2)=4e^{-x},y(0)=3,y^'(0)=2
\frac{d^{2}y}{dx^{2}}=4e^{-x},y(0)=3,y^{\prime\:}(0)=2
derivative of 1/(2sqrt(r))+1/(3r^{2/3)}
derivative\:\frac{1}{2\sqrt{r}}+\frac{1}{3r^{\frac{2}{3}}}
limit as y approaches infinity of 1/5 (2y^2+3y)x
\lim\:_{y\to\:\infty\:}(\frac{1}{5}(2y^{2}+3y)x)
area 2-x^2,10-6x
area\:2-x^{2},10-6x
integral from 0 to 0.4 of 300x
\int\:_{0}^{0.4}300xdx
integral of (\sqrt[3]{x})^4
\int\:(\sqrt[3]{x})^{4}dx
derivative of x^2log_{2}(x^3)
\frac{d}{dx}(x^{2}\log_{2}(x^{3}))
laplacetransform u^5
laplacetransform\:u^{5}
derivative of (x^4/3-7x)
\frac{d}{dx}(\frac{x^{4}}{3}-7x)
1
..
113
114
115
116
117
..
2459