Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of (20x^3+30x^2)/(15x^5)
domain\:\frac{20x^{3}+30x^{2}}{15x^{5}}
domain of f(x)=-sqrt(2x)+2
domain\:f(x)=-\sqrt{2x}+2
asymptotes of f(x)= 3/4 csc(-x)+3
asymptotes\:f(x)=\frac{3}{4}\csc(-x)+3
asymptotes of (x-1)/(x^2-4x+3)
asymptotes\:\frac{x-1}{x^{2}-4x+3}
inverse of f(x)=(2x-1)/(-x+5)
inverse\:f(x)=\frac{2x-1}{-x+5}
symmetry y=-2x^2+3
symmetry\:y=-2x^{2}+3
domain of sqrt(x/(x-2))
domain\:\sqrt{\frac{x}{x-2}}
extreme f(x)=ln(7-3x^2)
extreme\:f(x)=\ln(7-3x^{2})
inverse of f(x)=((x-8)^7)/7
inverse\:f(x)=\frac{(x-8)^{7}}{7}
f(x)=log_{3}(x)
f(x)=\log_{3}(x)
domain of (x-3)/(x^2-1)
domain\:\frac{x-3}{x^{2}-1}
domain of (sqrt(36-x^2))/(sqrt(x+3))
domain\:\frac{\sqrt{36-x^{2}}}{\sqrt{x+3}}
domain of s/(s^2-16)
domain\:\frac{s}{s^{2}-16}
inverse of f(x)=2-x
inverse\:f(x)=2-x
inverse of (x-14)^2
inverse\:(x-14)^{2}
inverse of f(x)=(1-e^{-x})/(1+e^{-x)}
inverse\:f(x)=\frac{1-e^{-x}}{1+e^{-x}}
inverse of y= 1/(x^2)
inverse\:y=\frac{1}{x^{2}}
extreme f(x)=-x^2+6x-9
extreme\:f(x)=-x^{2}+6x-9
inverse of f(x)=\sqrt[3]{x-6}
inverse\:f(x)=\sqrt[3]{x-6}
domain of f(x)= 1/(e^x)
domain\:f(x)=\frac{1}{e^{x}}
extreme f(x)=x^3+6x^2
extreme\:f(x)=x^{3}+6x^{2}
inflection f(x)=x^3-2x^2-4x+2
inflection\:f(x)=x^{3}-2x^{2}-4x+2
extreme f(x)=x^3-27x+57
extreme\:f(x)=x^{3}-27x+57
midpoint (6,-2),(-2,3)
midpoint\:(6,-2),(-2,3)
domain of f(x)= x/(12)
domain\:f(x)=\frac{x}{12}
domain of f(x)=-3/4 x^4-x^3+3x^2
domain\:f(x)=-\frac{3}{4}x^{4}-x^{3}+3x^{2}
inverse of f(x)=ln(ln(ln(4x)))
inverse\:f(x)=\ln(\ln(\ln(4x)))
domain of (x^3+4x^2)/(6x^2-1)
domain\:\frac{x^{3}+4x^{2}}{6x^{2}-1}
inverse of f(x)=(x+15)/(x-5)
inverse\:f(x)=\frac{x+15}{x-5}
critical f(x)=t^4-16t^3+22t^2
critical\:f(x)=t^{4}-16t^{3}+22t^{2}
inverse of f(x)=-(x+1)^3-2
inverse\:f(x)=-(x+1)^{3}-2
inverse of f(x)=x^2-6x+5
inverse\:f(x)=x^{2}-6x+5
domain of f(x)=12x^3-35
domain\:f(x)=12x^{3}-35
range of-3x^4-14x^3-16x^2-2x+3
range\:-3x^{4}-14x^{3}-16x^{2}-2x+3
parallel y-4=-1/10 (x-10)
parallel\:y-4=-\frac{1}{10}(x-10)
inverse of g(x)=13x-13
inverse\:g(x)=13x-13
domain of f(x)=sqrt(2x-1)
domain\:f(x)=\sqrt{2x-1}
asymptotes of f(x)=3-1/(x^2+1)
asymptotes\:f(x)=3-\frac{1}{x^{2}+1}
asymptotes of f(x)=((2x+3))/(5x-1)
asymptotes\:f(x)=\frac{(2x+3)}{5x-1}
inverse of y= 5/9 (x-32)
inverse\:y=\frac{5}{9}(x-32)
inverse of f(x)=1-8x^3
inverse\:f(x)=1-8x^{3}
asymptotes of (x-2)/((x+4)^2)
asymptotes\:\frac{x-2}{(x+4)^{2}}
slope of y+5=6(x-3)
slope\:y+5=6(x-3)
periodicity of 3sin(2x)
periodicity\:3\sin(2x)
slope of f(x)=3-5x
slope\:f(x)=3-5x
asymptotes of (3ln(x+1)+x^2-3x)/(1-e^x)
asymptotes\:\frac{3\ln(x+1)+x^{2}-3x}{1-e^{x}}
inverse of f(x)=x+14
inverse\:f(x)=x+14
extreme f(x)=x^2+9x-7
extreme\:f(x)=x^{2}+9x-7
extreme f(x)= 1/3 x^3-2x^2
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}
parity 2sec(x)dx
parity\:2\sec(x)dx
inflection f(x)=x^4-8x^2+3
inflection\:f(x)=x^{4}-8x^{2}+3
asymptotes of x^2+5x-3600
asymptotes\:x^{2}+5x-3600
critical sin(x+5/2)
critical\:\sin(x+\frac{5}{2})
domain of f(x)=2(x-2)^2-3
domain\:f(x)=2(x-2)^{2}-3
parity f(x)=-9x-x^7
parity\:f(x)=-9x-x^{7}
range of arcsec(x)
range\:\arcsec(x)
extreme x^3-3x^2-9x
extreme\:x^{3}-3x^{2}-9x
domain of (1+sqrt(1-x))/(1-sqrt(1+x))
domain\:\frac{1+\sqrt{1-x}}{1-\sqrt{1+x}}
inverse of 1/(x+7)
inverse\:\frac{1}{x+7}
extreme f(x)=(7x)/(x^2+49)
extreme\:f(x)=\frac{7x}{x^{2}+49}
domain of f(x)=sqrt((x-1)/(x^2-9))
domain\:f(x)=\sqrt{\frac{x-1}{x^{2}-9}}
domain of f(x)=2x^2-5x+1
domain\:f(x)=2x^{2}-5x+1
inverse of 2/(3-x)
inverse\:\frac{2}{3-x}
slope of y=-11x
slope\:y=-11x
extreme f(x)=x^3-3x^2-9x+2
extreme\:f(x)=x^{3}-3x^{2}-9x+2
critical 8x-4
critical\:8x-4
inverse of f(x)=6.3(b+2)^{3/2}
inverse\:f(x)=6.3(b+2)^{\frac{3}{2}}
domain of-2/x
domain\:-\frac{2}{x}
midpoint (1,6),(5,-2)
midpoint\:(1,6),(5,-2)
asymptotes of f(x)=(x^2-4)/(x^2-x-6)
asymptotes\:f(x)=\frac{x^{2}-4}{x^{2}-x-6}
range of f(x)=x^2-x+3
range\:f(x)=x^{2}-x+3
inverse of f(x)=(7-x)^2
inverse\:f(x)=(7-x)^{2}
intercepts of f(x)=(6x)/(x^2-4)
intercepts\:f(x)=\frac{6x}{x^{2}-4}
critical f(x)=-(2/(x^2+1))
critical\:f(x)=-(\frac{2}{x^{2}+1})
domain of f(x)= 1/(sqrt(1+2x))
domain\:f(x)=\frac{1}{\sqrt{1+2x}}
midpoint (0,1),(1,-1)
midpoint\:(0,1),(1,-1)
intercepts of 15x^{2/3}-10x
intercepts\:15x^{\frac{2}{3}}-10x
range of f(x)=log_{2}(x+5)
range\:f(x)=\log_{2}(x+5)
symmetry y= 5/(x+1)-3
symmetry\:y=\frac{5}{x+1}-3
domain of g(y)=sqrt(2y+15)
domain\:g(y)=\sqrt{2y+15}
parity f(x)= 3/(x-5)
parity\:f(x)=\frac{3}{x-5}
inverse of f(x)=x^4
inverse\:f(x)=x^{4}
intercepts of f(x)=2x^3-15x^2+36x-20
intercepts\:f(x)=2x^{3}-15x^{2}+36x-20
asymptotes of f(x)=((x^2-25))/((x-4))
asymptotes\:f(x)=\frac{(x^{2}-25)}{(x-4)}
critical f(x)=ln(x-6)
critical\:f(x)=\ln(x-6)
domain of-x-4
domain\:-x-4
distance (5,-6),(-3/5 ,1)
distance\:(5,-6),(-\frac{3}{5},1)
inverse of y=log_{2}(2x)
inverse\:y=\log_{2}(2x)
inverse of 3x-2
inverse\:3x-2
slope ofintercept x-2y=-2
slopeintercept\:x-2y=-2
simplify (1.2)(-9.4)
simplify\:(1.2)(-9.4)
slope of 7x-2y=-2
slope\:7x-2y=-2
midpoint (0,5),(-2,-2/3)
midpoint\:(0,5),(-2,-\frac{2}{3})
domain of f(x)=e^{-3t+2}
domain\:f(x)=e^{-3t+2}
inverse of x-3
inverse\:x-3
extreme f(x)=ln(3-5x^2)
extreme\:f(x)=\ln(3-5x^{2})
critical 2x+(4x)/(3x-1)
critical\:2x+\frac{4x}{3x-1}
monotone f(x)=sqrt(x^2-4)
monotone\:f(x)=\sqrt{x^{2}-4}
amplitude of 3sin(2x-pi/4)+1
amplitude\:3\sin(2x-\frac{π}{4})+1
distance (4,-3),(-1,3)
distance\:(4,-3),(-1,3)
1
..
125
126
127
128
129
..
1324