Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (sqrt(x)-2(3sqrt(x)+8))
\frac{d}{dx}((\sqrt{x}-2)(3\sqrt{x}+8))
integral of (x+2)/(5x+6)
\int\:\frac{x+2}{5x+6}dx
derivative of e^xcos(x-sin(x)e^x)
\frac{d}{dx}(e^{x}\cos(x)-\sin(x)e^{x})
y^{''}+36y^'=0
y^{\prime\:\prime\:}+36y^{\prime\:}=0
limit as x approaches pi/2+of sec(x)
\lim\:_{x\to\:\frac{π}{2}+}(\sec(x))
integral of x(sqrt(9-x^2))
\int\:x(\sqrt{9-x^{2}})dx
tangent of f(x)=(5x)/(x+2),(3,3)
tangent\:f(x)=\frac{5x}{x+2},(3,3)
integral from 0 to 4 of x/8
\int\:_{0}^{4}\frac{x}{8}dx
tangent of f(x)=e^x-xe^x,\at x=0
tangent\:f(x)=e^{x}-xe^{x},\at\:x=0
limit as x approaches-11 of x^2+11
\lim\:_{x\to\:-11}(x^{2}+11)
limit as x approaches 0 of arctan(e^x)
\lim\:_{x\to\:0}(\arctan(e^{x}))
integral from 2 to 3 of 1/((x+1)ln(x+1))
\int\:_{2}^{3}\frac{1}{(x+1)\ln(x+1)}dx
integral of (csc^2(x))/(cot^4(x))
\int\:\frac{\csc^{2}(x)}{\cot^{4}(x)}dx
derivative of f(x)=10x^3-20x+1/5
derivative\:f(x)=10x^{3}-20x+\frac{1}{5}
y^{''}+y= 1/4 sin(3t)-3/4 sin(t)
y^{\prime\:\prime\:}+y=\frac{1}{4}\sin(3t)-\frac{3}{4}\sin(t)
derivative of arccos((ax/2))
\frac{d}{dx}(\arccos(\frac{ax}{2}))
integral of 1/x-4/(x^2+1)
\int\:\frac{1}{x}-\frac{4}{x^{2}+1}dx
integral from 0 to infinity of cos^2(x)
\int\:_{0}^{\infty\:}\cos^{2}(x)dx
integral of 1/(64e^{-8x)+e^{8x}}
\int\:\frac{1}{64e^{-8x}+e^{8x}}dx
slope of (5,7),(-4,-2)
slope\:(5,7),(-4,-2)
integral of (e^{4x}+e^{-4x})^2
\int\:(e^{4x}+e^{-4x})^{2}dx
derivative of f(x)=-(10)/(x^2)
derivative\:f(x)=-\frac{10}{x^{2}}
integral of 8-2x^2
\int\:8-2x^{2}dx
(\partial)/(\partial y)(4arctan(x/y))
\frac{\partial\:}{\partial\:y}(4\arctan(\frac{x}{y}))
derivative of (x^2-2x-48/(x+6))
\frac{d}{dx}(\frac{x^{2}-2x-48}{x+6})
derivative of f(x)=4x^2-2x+3
derivative\:f(x)=4x^{2}-2x+3
parity tan(3x)+x^4
parity\:\tan(3x)+x^{4}
y^{''}+11y^'+28y=84x^2+66x+6+40e^x
y^{\prime\:\prime\:}+11y^{\prime\:}+28y=84x^{2}+66x+6+40e^{x}
limit as x approaches 12 of sqrt(x-3)
\lim\:_{x\to\:12}(\sqrt{x-3})
tangent of f(x)=x^2-3,\at x=-2
tangent\:f(x)=x^{2}-3,\at\:x=-2
integral of x/(sqrt(2x^2+5))
\int\:\frac{x}{\sqrt{2x^{2}+5}}dx
integral of (3x+1)/(x^2+x-6)
\int\:\frac{3x+1}{x^{2}+x-6}dx
area x=7y^2,x=3+4y^2
area\:x=7y^{2},x=3+4y^{2}
integral of sin(mpix)
\int\:\sin(mπx)dx
derivative of f(x)=2x-(e^x)/2
derivative\:f(x)=2x-\frac{e^{x}}{2}
integral from pi to infinity of 4/(x^2)
\int\:_{π}^{\infty\:}\frac{4}{x^{2}}dx
y^{''}+2y^'+y=(3x+4)e^{3x}
y^{\prime\:\prime\:}+2y^{\prime\:}+y=(3x+4)e^{3x}
f(x)=x^5-x^3+3
f(x)=x^{5}-x^{3}+3
normal of y=x^4+9e^x,(0,9)
normal\:y=x^{4}+9e^{x},(0,9)
derivative of 9xe^{-kx}
derivative\:9xe^{-kx}
area y=4-x^2,y=14-7x
area\:y=4-x^{2},y=14-7x
integral of 8cos(x)+3x-8
\int\:8\cos(x)+3x-8dx
derivative of y=ln(1/((x-2)^3))
derivative\:y=\ln(\frac{1}{(x-2)^{3}})
laplacetransform-5e^{4t}
laplacetransform\:-5e^{4t}
(\partial)/(\partial x)(xsin(2x^2y))
\frac{\partial\:}{\partial\:x}(x\sin(2x^{2}y))
integral of 1/(tsqrt(4t^2-1))
\int\:\frac{1}{t\sqrt{4t^{2}-1}}dt
y^{''}-y=x^2e^x
y^{\prime\:\prime\:}-y=x^{2}e^{x}
integral of 2(x-1)
\int\:2(x-1)dx
y^{''}+2y^'+36y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}+36y=0,y(0)=1,y^{\prime\:}(0)=0
integral from 1 to 3 of (x-1)
\int\:_{1}^{3}(x-1)dx
derivative of 2tan(xsec^2(x))
\frac{d}{dx}(2\tan(x)\sec^{2}(x))
derivative of ln(tan(x))
derivative\:\ln(\tan(x))
(\partial)/(\partial x)(((-x+y))/(x*y+3*x))
\frac{\partial\:}{\partial\:x}(\frac{(-x+y)}{x\cdot\:y+3\cdot\:x})
y^'=y^2(5+x)
y^{\prime\:}=y^{2}(5+x)
(\partial)/(\partial x)(z/(1+z^2y^2))
\frac{\partial\:}{\partial\:x}(\frac{z}{1+z^{2}y^{2}})
derivative of Axe^{3x}
\frac{d}{dx}(Axe^{3x})
f(t)=sin(t)-tcos(t)
f(t)=\sin(t)-t\cos(t)
f^'(x)=(1-e^x)/(9+e^x)
f^{\prime\:}(x)=\frac{1-e^{x}}{9+e^{x}}
xy^'+y=-2xy^2,y(1)=2
xy^{\prime\:}+y=-2xy^{2},y(1)=2
(\partial)/(\partial y)(y^2sin(xy))
\frac{\partial\:}{\partial\:y}(y^{2}\sin(xy))
limit as x approaches 5 of 2/((x-5)^6)
\lim\:_{x\to\:5}(\frac{2}{(x-5)^{6}})
limit as x approaches 1 of 2x^{-1}
\lim\:_{x\to\:1}(2x^{-1})
laplacetransform te^{-5t}sin(5t)
laplacetransform\:te^{-5t}\sin(5t)
integral of 6e^7
\int\:6e^{7}dx
derivative of e^{2x}+3
\frac{d}{dx}(e^{2x}+3)
y^{''}+5y^'+6y=e-3x
y^{\prime\:\prime\:}+5y^{\prime\:}+6y=e-3x
integral of (e^{2t})/(e^t+3)
\int\:\frac{e^{2t}}{e^{t}+3}dt
(dy)/(dx)+6y=4
\frac{dy}{dx}+6y=4
laplacetransform 2cos(2t)
laplacetransform\:2\cos(2t)
derivative of e^{y-1}
derivative\:e^{y-1}
limit as x approaches 2-of (|x-2|)/x
\lim\:_{x\to\:2-}(\frac{\left|x-2\right|}{x})
(dy}{dx}=x+\frac{3y)/x
\frac{dy}{dx}=x+\frac{3y}{x}
(\partial)/(\partial x)(1/y-1/(x^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{y}-\frac{1}{x^{2}})
(\partial)/(\partial y)(5x^2y^2)
\frac{\partial\:}{\partial\:y}(5x^{2}y^{2})
xdy-(2xe^{(-y)/x}+y)dx=0
xdy-(2xe^{\frac{-y}{x}}+y)dx=0
d/(dθ)(8cos(θ)+2sin(θ))
\frac{d}{dθ}(8\cos(θ)+2\sin(θ))
(dy)/(dx)-xe^y=2e^y
\frac{dy}{dx}-xe^{y}=2e^{y}
(d^2y)/(dx^2)+2(dy)/(dx)+y=e^{-x}*ln(x)
\frac{d^{2}y}{dx^{2}}+2\frac{dy}{dx}+y=e^{-x}\cdot\:\ln(x)
(\partial)/(\partial x)(1+xy^2)
\frac{\partial\:}{\partial\:x}(1+xy^{2})
limit as h approaches 0 of 3/h
\lim\:_{h\to\:0}(\frac{3}{h})
derivative of 4tan^2(7x)
derivative\:4\tan^{2}(7x)
(dy)/(dx)=-1/2 y
\frac{dy}{dx}=-\frac{1}{2}y
derivative of f(x)=((x^2-1))/(x^2+1)
derivative\:f(x)=\frac{(x^{2}-1)}{x^{2}+1}
integral of 5x^2+(2/x)^4
\int\:5x^{2}+(\frac{2}{x})^{4}dx
(d^2y)/(dx^2)+y=0
\frac{d^{2}y}{dx^{2}}+y=0
y^'-1/x y=x^2e^x
y^{\prime\:}-\frac{1}{x}y=x^{2}e^{x}
derivative of (cos(2x)/(sin(3x)))
\frac{d}{dx}(\frac{\cos(2x)}{\sin(3x)})
integral from 0 to 16 of sqrt(t^2+2t+1)
\int\:_{0}^{16}\sqrt{t^{2}+2t+1}dt
y^'=((x^3y^3+4x^3))/(y^2)
y^{\prime\:}=\frac{(x^{3}y^{3}+4x^{3})}{y^{2}}
integral from 1/5 to 3 of 12xln(5x)
\int\:_{\frac{1}{5}}^{3}12x\ln(5x)dx
integral of (x^2+sqrt(x)+1/x)
\int\:(x^{2}+\sqrt{x}+\frac{1}{x})dx
derivative of f(x)=5x^2-5x+9
derivative\:f(x)=5x^{2}-5x+9
derivative of-9x^3+27x+7x-66
\frac{d}{dx}(-9x^{3}+27x+7x-66)
tangent of 3sqrt(x),\at x=4
tangent\:3\sqrt{x},\at\:x=4
integral of 5tan^3(x)sec^3(x)
\int\:5\tan^{3}(x)\sec^{3}(x)dx
integral from 1 to 4 of 1/(sqrt(x))
\int\:_{1}^{4}\frac{1}{\sqrt{x}}dx
(\partial)/(\partial x)(arcsin(xyz))
\frac{\partial\:}{\partial\:x}(\arcsin(xyz))
integral of (x^3)/((5-x^4)^6)
\int\:\frac{x^{3}}{(5-x^{4})^{6}}dx
(dy)/(dx)=-xy
\frac{dy}{dx}=-xy
integral from 0 to 2pi of cos^2(6x)
\int\:_{0}^{2π}\cos^{2}(6x)dx
1
..
165
166
167
168
169
..
2459