Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of-x^3-9
inverse\:-x^{3}-9
extreme f(x)=x^4-4x^3+8
extreme\:f(x)=x^{4}-4x^{3}+8
inverse of y=sqrt(x)
inverse\:y=\sqrt{x}
inflection g(x)= x/(5+x^2)
inflection\:g(x)=\frac{x}{5+x^{2}}
extreme f(x)=5-8x+2x^2
extreme\:f(x)=5-8x+2x^{2}
extreme sqrt(3)tan^2(x)
extreme\:\sqrt{3}\tan^{2}(x)
inverse of f(x)= 3/2 x+12
inverse\:f(x)=\frac{3}{2}x+12
critical x^5-5x^3
critical\:x^{5}-5x^{3}
perpendicular y=-1/2 (x-1)+4
perpendicular\:y=-\frac{1}{2}(x-1)+4
critical 8x^4-8x^2+1
critical\:8x^{4}-8x^{2}+1
domain of y=-2(5)^{x-4}+3
domain\:y=-2(5)^{x-4}+3
asymptotes of f(x)=(x^2+6x-8)/(x-4)
asymptotes\:f(x)=\frac{x^{2}+6x-8}{x-4}
domain of f(x)=(x+3)/(x-7)
domain\:f(x)=\frac{x+3}{x-7}
range of f(x)=2x^2-8x-3
range\:f(x)=2x^{2}-8x-3
asymptotes of f(x)=(x-9)/(x^2+81)
asymptotes\:f(x)=\frac{x-9}{x^{2}+81}
extreme f(x)=x^3+3x^2-3
extreme\:f(x)=x^{3}+3x^{2}-3
asymptotes of f(x)=((x^2-1))/x
asymptotes\:f(x)=\frac{(x^{2}-1)}{x}
asymptotes of f(x)=2^{x+2}
asymptotes\:f(x)=2^{x+2}
domain of f(x)=(2x+7)/(5x)
domain\:f(x)=\frac{2x+7}{5x}
domain of x/(x+4)
domain\:\frac{x}{x+4}
domain of y=sqrt(36-x^2)
domain\:y=\sqrt{36-x^{2}}
inverse of f(x)=81-2/x
inverse\:f(x)=81-\frac{2}{x}
asymptotes of f(x)=(3x-3)/(x+2)
asymptotes\:f(x)=\frac{3x-3}{x+2}
intercepts of f(x)=x^2+7x+10
intercepts\:f(x)=x^{2}+7x+10
domain of f(x)=sqrt(1/x+5)
domain\:f(x)=\sqrt{\frac{1}{x}+5}
parity f(x)=5x|x|
parity\:f(x)=5x\left|x\right|
distance (-4,-2),(6,-10)
distance\:(-4,-2),(6,-10)
domain of f(x)=(6x)/(5x-8)
domain\:f(x)=\frac{6x}{5x-8}
extreme 17x(x-1)^3
extreme\:17x(x-1)^{3}
perpendicular y=-3/4 x+2
perpendicular\:y=-\frac{3}{4}x+2
inverse of f(x)=-5x+20
inverse\:f(x)=-5x+20
y=x^2-2x-3
y=x^{2}-2x-3
midpoint (2,-6),(4,10)
midpoint\:(2,-6),(4,10)
inverse of f(x)=ln(x-3)-2
inverse\:f(x)=\ln(x-3)-2
slope of (-1,0),(-4,-5)
slope\:(-1,0),(-4,-5)
domain of 4/(\frac{x){x+4}}
domain\:\frac{4}{\frac{x}{x+4}}
domain of f(x)=9x^2+2
domain\:f(x)=9x^{2}+2
domain of f(x)=((x+1))/((2x+1))
domain\:f(x)=\frac{(x+1)}{(2x+1)}
simplify (-1.2)(-9.4)
simplify\:(-1.2)(-9.4)
asymptotes of f(x)= x/(x^2-16)
asymptotes\:f(x)=\frac{x}{x^{2}-16}
parity f(x)= 7/(x^8+5x+1)
parity\:f(x)=\frac{7}{x^{8}+5x+1}
line (10,-1),(-4,-5)
line\:(10,-1),(-4,-5)
asymptotes of f(x)= 1/((x-7)^2)
asymptotes\:f(x)=\frac{1}{(x-7)^{2}}
intercepts of f(x)=x^2+x-2
intercepts\:f(x)=x^{2}+x-2
domain of f(x)=(x+6)/(x^2-16)
domain\:f(x)=\frac{x+6}{x^{2}-16}
domain of-sqrt(2-x)
domain\:-\sqrt{2-x}
slope ofintercept 3x-y=-11
slopeintercept\:3x-y=-11
simplify (-1.6)(-4.1)
simplify\:(-1.6)(-4.1)
domain of f(x)=x^2-7
domain\:f(x)=x^{2}-7
inflection f(x)=sqrt(2-x^2)
inflection\:f(x)=\sqrt{2-x^{2}}
midpoint (4,-3),(0,1)
midpoint\:(4,-3),(0,1)
critical x^2
critical\:x^{2}
intercepts of f(x)=(2x-1)(4x-1)
intercepts\:f(x)=(2x-1)(4x-1)
asymptotes of (5x)/(x^2-4)
asymptotes\:\frac{5x}{x^{2}-4}
critical 4x^3+7x^2-20x
critical\:4x^{3}+7x^{2}-20x
extreme f(x)=x^2+2x-1
extreme\:f(x)=x^{2}+2x-1
range of (x+8)/3
range\:\frac{x+8}{3}
parity y=e^{csc(6x)tan(6x)}
parity\:y=e^{\csc(6x)\tan(6x)}
symmetry-2x^2+2x-4
symmetry\:-2x^{2}+2x-4
intercepts of 1.4x^2+2x+1
intercepts\:1.4x^{2}+2x+1
inverse of f(x)=(1/2)sqrt(x-7)
inverse\:f(x)=(\frac{1}{2})\sqrt{x-7}
domain of f(x)= 6/(4/x-1)
domain\:f(x)=\frac{6}{\frac{4}{x}-1}
domain of f(x)=(ln(x^2-4))/(2x^2+x-15)
domain\:f(x)=\frac{\ln(x^{2}-4)}{2x^{2}+x-15}
line (-1,-2),(2,4)
line\:(-1,-2),(2,4)
domain of (x+3)^3-1
domain\:(x+3)^{3}-1
parity f(x)=(x-3)sqrt(x)
parity\:f(x)=(x-3)\sqrt{x}
intercepts of f(x)=2x^2+3x-4
intercepts\:f(x)=2x^{2}+3x-4
domain of f(x)=1-|x|
domain\:f(x)=1-\left|x\right|
y=-x-3
y=-x-3
y=x^3+3x^2+3x+1
y=x^{3}+3x^{2}+3x+1
monotone f(x)=(6x-2)/(x+6)
monotone\:f(x)=\frac{6x-2}{x+6}
slope ofintercept y=-2x+9
slopeintercept\:y=-2x+9
inverse of csc^2(x)
inverse\:\csc^{2}(x)
critical f(x)=((x-1))/((x+3))
critical\:f(x)=\frac{(x-1)}{(x+3)}
slope of 4x-7y=10
slope\:4x-7y=10
slope ofintercept x+3y=15
slopeintercept\:x+3y=15
symmetry y=x^2-x-72
symmetry\:y=x^{2}-x-72
asymptotes of y=(x+4)/(x^2+5x+4)
asymptotes\:y=\frac{x+4}{x^{2}+5x+4}
domain of y=25x
domain\:y=25x
distance (3,2),(-1,-1)
distance\:(3,2),(-1,-1)
asymptotes of (x-6)/(x+6)
asymptotes\:\frac{x-6}{x+6}
inverse of 1/x+5
inverse\:\frac{1}{x}+5
extreme (x+1)^{4/5}
extreme\:(x+1)^{\frac{4}{5}}
inverse of f(x)=x^2+4x-1
inverse\:f(x)=x^{2}+4x-1
midpoint (1,9),(7,-7)
midpoint\:(1,9),(7,-7)
distance (4,2),(-6,-6)
distance\:(4,2),(-6,-6)
monotone f(x)=-5sqrt(x-6)
monotone\:f(x)=-5\sqrt{x-6}
domain of x^3+3x^2+2x+1
domain\:x^{3}+3x^{2}+2x+1
domain of f(x)=(x^2+x-2)/(x^2-3x-4)
domain\:f(x)=\frac{x^{2}+x-2}{x^{2}-3x-4}
range of (x-1)/((x-2)(x+4))
range\:\frac{x-1}{(x-2)(x+4)}
asymptotes of f(x)=(-2)/(x-2)
asymptotes\:f(x)=\frac{-2}{x-2}
inverse of f(x)=(x-6)/6
inverse\:f(x)=\frac{x-6}{6}
inverse of f(x)=-4x-5
inverse\:f(x)=-4x-5
intercepts of 5^x+3
intercepts\:5^{x}+3
domain of sqrt(x)-2
domain\:\sqrt{x}-2
slope ofintercept 0.8x-0.6x=14
slopeintercept\:0.8x-0.6x=14
line m=5,(0,2)
line\:m=5,(0,2)
inverse of f(x)=(5x-10)/5+2
inverse\:f(x)=\frac{5x-10}{5}+2
domain of f(x)=sqrt(-x+7)
domain\:f(x)=\sqrt{-x+7}
inverse of sqrt(-4x^2+12)
inverse\:\sqrt{-4x^{2}+12}
1
..
142
143
144
145
146
..
1324