Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 3 of 5(x-3)ln(x-3)
\lim\:_{x\to\:3}(5(x-3)\ln(x-3))
tangent of f(x)= 1/x+3,\at x=-1
tangent\:f(x)=\frac{1}{x}+3,\at\:x=-1
limit as x approaches 5 of-9/(x+5)
\lim\:_{x\to\:5}(-\frac{9}{x+5})
integral from 1 to 3 of 1/(sqrt(3-x))
\int\:_{1}^{3}\frac{1}{\sqrt{3-x}}dx
derivative of (sin(6x))^4
derivative\:(\sin(6x))^{4}
integral from 1 to e of x^3ln(x)
\int\:_{1}^{e}x^{3}\ln(x)dx
derivative of x/(20)
\frac{d}{dx}(\frac{x}{20})
tangent of y=7e^x+x,(0,7)
tangent\:y=7e^{x}+x,(0,7)
inverse oflaplace 4
inverselaplace\:4
integral from 0 to 6 of x^2-6x
\int\:_{0}^{6}x^{2}-6xdx
area x^2,x+5
area\:x^{2},x+5
y^{''}-6y^'+8y=2cos(3t),y(0)=2,y^'(0)=-4
y^{\prime\:\prime\:}-6y^{\prime\:}+8y=2\cos(3t),y(0)=2,y^{\prime\:}(0)=-4
e^yy^'=e^y+4x
e^{y}y^{\prime\:}=e^{y}+4x
derivative of sec^2(2x)
derivative\:\sec^{2}(2x)
ydx+(x^2+4x)dy=0
ydx+(x^{2}+4x)dy=0
(dy)/(dx)=(e^x+7)^2
\frac{dy}{dx}=(e^{x}+7)^{2}
derivative of y=x^2cos(4/x)
derivative\:y=x^{2}\cos(\frac{4}{x})
normal of f(x)=x^4+2e^x,(0,2)
normal\:f(x)=x^{4}+2e^{x},(0,2)
derivative of (sin(x))^2
derivative\:(\sin(x))^{2}
limit as x approaches 0+of-x+5
\lim\:_{x\to\:0+}(-x+5)
taylor e^{-3x}
taylor\:e^{-3x}
limit as x approaches 9-of (x^9)/(x-9)
\lim\:_{x\to\:9-}(\frac{x^{9}}{x-9})
limit as x approaches 0+of xln(x^6)
\lim\:_{x\to\:0+}(x\ln(x^{6}))
tangent of (6x)/((x+1))
tangent\:\frac{6x}{(x+1)}
integral of (7x^2+x+54)/(x^3+9x)
\int\:\frac{7x^{2}+x+54}{x^{3}+9x}dx
derivative of y=sqrt(x+2)
derivative\:y=\sqrt{x+2}
derivative of 5/(25x^2+1)
\frac{d}{dx}(\frac{5}{25x^{2}+1})
integral of (2t^5)/5-(2t^2)/5-(2t)/5
\int\:\frac{2t^{5}}{5}-\frac{2t^{2}}{5}-\frac{2t}{5}dt
derivative of ln(3^{3x})
\frac{d}{dx}(\ln(3^{3x}))
integral from 0 to 1/2 of 5cos(-1(x))
\int\:_{0}^{\frac{1}{2}}5\cos(-1(x))dx
(\partial)/(\partial x)(ysqrt(x))
\frac{\partial\:}{\partial\:x}(y\sqrt{x})
(\partial)/(\partial x)(e^{-pi/2})
\frac{\partial\:}{\partial\:x}(e^{-\frac{π}{2}})
integral of 20te^t
\int\:20te^{t}dt
tangent of f(x)=4x^2+7,(-3,43)
tangent\:f(x)=4x^{2}+7,(-3,43)
slope ofintercept (-4,-6),(4,-2)
slopeintercept\:(-4,-6),(4,-2)
tangent of f(x)=(-4x)/(x^2+1),(1,-2)
tangent\:f(x)=\frac{-4x}{x^{2}+1},(1,-2)
integral of x/(e^{-3x)}
\int\:\frac{x}{e^{-3x}}dx
integral of tan^2(w)
\int\:\tan^{2}(w)dw
(\partial)/(\partial x)(-ae^{kz}wsin(kx-wt))
\frac{\partial\:}{\partial\:x}(-ae^{kz}w\sin(kx-wt))
y^{''}-5y^'=25t,y(0)=5,y^'(0)=0
y^{\prime\:\prime\:}-5y^{\prime\:}=25t,y(0)=5,y^{\prime\:}(0)=0
integral from 0 to 2 of xsqrt(4-x^2)
\int\:_{0}^{2}x\sqrt{4-x^{2}}dx
integral of (arctan(x))/((1+x^2)^{3/2)}
\int\:\frac{\arctan(x)}{(1+x^{2})^{\frac{3}{2}}}dx
integral of 12x^2(x^3+4)^3
\int\:12x^{2}(x^{3}+4)^{3}dx
derivative of xsqrt(2)
\frac{d}{dx}(x\sqrt{2})
derivative of x^{2/3}-1
\frac{d}{dx}(x^{\frac{2}{3}}-1)
area x,x^1,0,1
area\:x,x^{1},0,1
limit as n approaches infinity of n/4
\lim\:_{n\to\:\infty\:}(\frac{n}{4})
limit as x approaches 0+of x^2ln(3x)
\lim\:_{x\to\:0+}(x^{2}\ln(3x))
integral of 10sqrt(tan(x))sec^4(x)
\int\:10\sqrt{\tan(x)}\sec^{4}(x)dx
(\partial)/(\partial y)(e^{xz})
\frac{\partial\:}{\partial\:y}(e^{xz})
integral of sec^2(5x)
\int\:\sec^{2}(5x)dx
derivative of y=e^{10-7x}
derivative\:y=e^{10-7x}
maclaurin e^{3x}
maclaurin\:e^{3x}
(\partial)/(\partial x)(2xe^{xy^3})
\frac{\partial\:}{\partial\:x}(2xe^{xy^{3}})
derivative of sqrt(36-y^2)
derivative\:\sqrt{36-y^{2}}
y^{''}-5y^'+6y=cos(2x)+1
y^{\prime\:\prime\:}-5y^{\prime\:}+6y=\cos(2x)+1
limit as x approaches+(-1)-of 2
\lim\:_{x\to\:+(-1)-}(2)
derivative of-(2sec^2(x)/((1+tan(x))^3))
\frac{d}{dx}(-\frac{2\sec^{2}(x)}{(1+\tan(x))^{3}})
tangent of f(x)= 7/(sqrt(x)),\at x=1
tangent\:f(x)=\frac{7}{\sqrt{x}},\at\:x=1
(\partial)/(\partial u)(u+2v)
\frac{\partial\:}{\partial\:u}(u+2v)
derivative of x-2pi
\frac{d}{dx}(x-2π)
derivative of y=x^2+2x-2
derivative\:y=x^{2}+2x-2
y^'=e^{9y-x}
y^{\prime\:}=e^{9y-x}
tangent of f(x)=x^3,\at x=-5
tangent\:f(x)=x^{3},\at\:x=-5
limit as x approaches 0 of 1-cos(3x)
\lim\:_{x\to\:0}(1-\cos(3x))
limit as x approaches infinity of log_{2}(log_{2}(x)-1)
\lim\:_{x\to\:\infty\:}(\log_{2}(\log_{2}(x)-1))
integral from 0 to pi/2 of sin^5(x)
\int\:_{0}^{\frac{π}{2}}\sin^{5}(x)dx
integral from 0 to 2 of 8000te^{-0.6t}
\int\:_{0}^{2}8000te^{-0.6t}dt
integral of (6x^2+3x+10)/(x^3+2x^2+5x)
\int\:\frac{6x^{2}+3x+10}{x^{3}+2x^{2}+5x}dx
tangent of sqrt(x^2+40)
tangent\:\sqrt{x^{2}+40}
derivative of (x^5-2x/(-5))
\frac{d}{dx}(\frac{x^{5}-2x}{-5})
derivative of 7u^e
derivative\:7u^{e}
maclaurin e^{-x^2}
maclaurin\:e^{-x^{2}}
integral of (2x)/((x^2+1)^2)
\int\:\frac{2x}{(x^{2}+1)^{2}}dx
integral from pi/6 to pi/4 of cos(x)
\int\:_{\frac{π}{6}}^{\frac{π}{4}}\cos(x)dx
taylor s(t)=5^t
taylor\:s(t)=5^{t}
derivative of-3tan(x)
\frac{d}{dx}(-3\tan(x))
integral from 7 to 8 of (7/(x^2)-1)
\int\:_{7}^{8}(\frac{7}{x^{2}}-1)dx
integral of ((x^2+1)/(x^2))
\int\:(\frac{x^{2}+1}{x^{2}})dx
derivative of ((x-4)/x)
\frac{d}{dx}(\frac{(x-4)}{x})
(\partial)/(\partial x)(6xsin(8x^2y))
\frac{\partial\:}{\partial\:x}(6x\sin(8x^{2}y))
derivative of-(2x)/((1+x^2)^2)
derivative\:-\frac{2x}{(1+x^{2})^{2}}
derivative of (x^2+2x^5)
\frac{d}{dx}((x^{2}+2x)^{5})
area y=x^2,y=x,y=2
area\:y=x^{2},y=x,y=2
derivative of (1^2/(2^1))
\frac{d}{dx}(\frac{1^{2}}{2^{1}})
sum from n=0 to infinity of (1/2)^{2n}
\sum\:_{n=0}^{\infty\:}(\frac{1}{2})^{2n}
derivative of y= 1/3 e^{3x}
derivative\:y=\frac{1}{3}e^{3x}
integral from 0 to 1 of (2x+1)^4
\int\:_{0}^{1}(2x+1)^{4}dx
derivative of f(x)=-8sin(x)
derivative\:f(x)=-8\sin(x)
integral of (z^2)
\int\:(z^{2})dz
(\partial)/(\partial x)(1/x+1/(1-x))
\frac{\partial\:}{\partial\:x}(\frac{1}{x}+\frac{1}{1-x})
integral of (-2cos(x))
\int\:(-2\cos(x))dx
integral of sin(t/2)t
\int\:\sin(\frac{t}{2})tdt
area 1-x^2,-1,1
area\:1-x^{2},-1,1
d/(da)(tan(a)*cot(a))
\frac{d}{da}(\tan(a)\cdot\:\cot(a))
(d^2y)/(dx^2)-6(dy)/(dx)+9y=sec(3x)
\frac{d^{2}y}{dx^{2}}-6\frac{dy}{dx}+9y=\sec(3x)
derivative of arcsin(e^{3x})
\frac{d}{dx}(\arcsin(e^{3x}))
integral of 6xcos(3x^2)
\int\:6x\cos(3x^{2})dx
(\partial)/(\partial x)((x+y)^z)
\frac{\partial\:}{\partial\:x}((x+y)^{z})
limit as x approaches pi of x
\lim\:_{x\to\:π}(x)
1
..
119
120
121
122
123
..
2459