解答
2sin2(x)=tan2(x)
解答
x=2πn,x=π+2πn,x=43π+2πn,x=45π+2πn,x=4π+2πn,x=47π+2πn
+1
度数
x=0∘+360∘n,x=180∘+360∘n,x=135∘+360∘n,x=225∘+360∘n,x=45∘+360∘n,x=315∘+360∘n求解步骤
2sin2(x)=tan2(x)
两边减去 tan2(x)2sin2(x)−tan2(x)=0
分解 2sin2(x)−tan2(x):(2sin(x)+tan(x))(2sin(x)−tan(x))
2sin2(x)−tan2(x)
将 2sin2(x)−tan2(x) 改写为 (2sin(x))2−tan2(x)
2sin2(x)−tan2(x)
使用根式运算法则: a=(a)22=(2)2=(2)2sin2(x)−tan2(x)
使用指数法则: ambm=(ab)m(2)2sin2(x)=(2sin(x))2=(2sin(x))2−tan2(x)
=(2sin(x))2−tan2(x)
使用平方差公式: x2−y2=(x+y)(x−y)(2sin(x))2−tan2(x)=(2sin(x)+tan(x))(2sin(x)−tan(x))=(2sin(x)+tan(x))(2sin(x)−tan(x))
(2sin(x)+tan(x))(2sin(x)−tan(x))=0
分别求解每个部分2sin(x)+tan(x)=0or2sin(x)−tan(x)=0
2sin(x)+tan(x)=0:x=2πn,x=π+2πn,x=43π+2πn,x=45π+2πn
2sin(x)+tan(x)=0
用 sin, cos 表示
tan(x)+sin(x)2
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(x)sin(x)+sin(x)2
化简 cos(x)sin(x)+sin(x)2:cos(x)sin(x)+2sin(x)cos(x)
cos(x)sin(x)+sin(x)2
将项转换为分式: 2sin(x)=cos(x)sin(x)2cos(x)=cos(x)sin(x)+cos(x)sin(x)2cos(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)sin(x)+sin(x)2cos(x)
=cos(x)sin(x)+2sin(x)cos(x)
cos(x)sin(x)+cos(x)sin(x)2=0
g(x)f(x)=0⇒f(x)=0sin(x)+cos(x)sin(x)2=0
分解 sin(x)+cos(x)sin(x)2:sin(x)(1+2cos(x))
sin(x)+cos(x)sin(x)2
因式分解出通项 sin(x)=sin(x)(1+cos(x)2)
sin(x)(1+2cos(x))=0
分别求解每个部分sin(x)=0or1+2cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
1+2cos(x)=0:x=43π+2πn,x=45π+2πn
1+2cos(x)=0
将 1到右边
1+2cos(x)=0
两边减去 11+2cos(x)−1=0−1
化简2cos(x)=−1
2cos(x)=−1
两边除以 2
2cos(x)=−1
两边除以 222cos(x)=2−1
化简
22cos(x)=2−1
化简 22cos(x):cos(x)
22cos(x)
约分:2=cos(x)
化简 2−1:−22
2−1
使用分式法则: b−a=−ba=−21
−21有理化:−22
−21
乘以共轭根式 22=−221⋅2
1⋅2=2
22=2
22
使用根式运算法则: aa=a22=2=2
=−22
=−22
cos(x)=−22
cos(x)=−22
cos(x)=−22
cos(x)=−22的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=43π+2πn,x=45π+2πn
x=43π+2πn,x=45π+2πn
合并所有解x=2πn,x=π+2πn,x=43π+2πn,x=45π+2πn
2sin(x)−tan(x)=0:x=2πn,x=π+2πn,x=4π+2πn,x=47π+2πn
2sin(x)−tan(x)=0
用 sin, cos 表示
−tan(x)+sin(x)2
使用基本三角恒等式: tan(x)=cos(x)sin(x)=−cos(x)sin(x)+sin(x)2
化简 −cos(x)sin(x)+sin(x)2:cos(x)−sin(x)+2sin(x)cos(x)
−cos(x)sin(x)+sin(x)2
将项转换为分式: 2sin(x)=cos(x)sin(x)2cos(x)=−cos(x)sin(x)+cos(x)sin(x)2cos(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)−sin(x)+sin(x)2cos(x)
=cos(x)−sin(x)+2sin(x)cos(x)
cos(x)−sin(x)+cos(x)sin(x)2=0
g(x)f(x)=0⇒f(x)=0−sin(x)+cos(x)sin(x)2=0
分解 −sin(x)+cos(x)sin(x)2:sin(x)(−1+2cos(x))
−sin(x)+cos(x)sin(x)2
因式分解出通项 sin(x)=sin(x)(−1+cos(x)2)
sin(x)(−1+2cos(x))=0
分别求解每个部分sin(x)=0or−1+2cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
−1+2cos(x)=0:x=4π+2πn,x=47π+2πn
−1+2cos(x)=0
将 1到右边
−1+2cos(x)=0
两边加上 1−1+2cos(x)+1=0+1
化简2cos(x)=1
2cos(x)=1
两边除以 2
2cos(x)=1
两边除以 222cos(x)=21
化简
22cos(x)=21
化简 22cos(x):cos(x)
22cos(x)
约分:2=cos(x)
化简 21:22
21
乘以共轭根式 22=221⋅2
1⋅2=2
22=2
22
使用根式运算法则: aa=a22=2=2
=22
cos(x)=22
cos(x)=22
cos(x)=22
cos(x)=22的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=4π+2πn,x=47π+2πn
x=4π+2πn,x=47π+2πn
合并所有解x=2πn,x=π+2πn,x=4π+2πn,x=47π+2πn
合并所有解x=2πn,x=π+2πn,x=43π+2πn,x=45π+2πn,x=4π+2πn,x=47π+2πn